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ABSTRACY

Shock inciced demagnetization produced by strain induced magnetic ani-
sotropy is considerx 1in single crystal and polycrystalline ferromagnetic
material. A consistent application of equilibrium thermodynamics in conjunc-
tion with established tools of ferromagnetic domain theory is used to develop
energy expressions, magnetization curves, and domain structure in the magnetic
material behind the shock wave. This approach has nct previously been used to

describe the shock induced anisotropy effect. In particular, specific expres-

sions for the exchange energy and magnetic self energy are explicitly obtained.

They are predicted to increase as the fourth root of the strain and are small
compared to the induced anisotropy energy in the region of large elastic and
plastic str=in. A needle or sliver shaped domain structure oriented in the
direction of shock propagation 15 expectad to nucleate behind the shock front.
These results follow from the domain theory analysis and have not previously
been obtained.

In polycrystalline material, the averaging procedure required to pre-
dict the magnetic behavior is critically analyzed. The importance of magnetic
grain-grain interaction is pcinted out and magnetization curves for the ex-
treme assumptions of interacting grains and independent grains are determined.
The effect of porosity and finite strain is also considered. These results
are compared with those obtained by Shaner and Royce (J. Appl. Phys. 39, 492
(1968)) for interacting grains and effects of finite strain.

Experimental demagnetization curves are vbtained for shocked poly-
crystalline yttrium iron garnet at about one-third and two-thirds the Hugoniot
elastic limit of the material. The results support the independent grain

theory.
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During this work a successful experimental technique was developed
which, in conjunction with a gas gun used for impact studies, applies the
required uniaxial strain field and magnetic field and measures the sub-

sequent shock induced demagnetization.
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CHAPTER I
INTRODUCTION

Creation of an anisotropic ferromagnet by subjecting a ferromagnetic
material tc a planar shock wave produces the shock induced magnetic anisotropy
effect. The resulting uniaxial strain establishes a magnetic anisctropy field
which furdamentally affects the magnetic behavior of the material. A quanti-
tative understanding of this shock induced magnetic behavior is necessary

before a complete description of the response of magnetic materials to dynamic

loading can be determined.

1.1 Background

The interdependence of magnetic and elastic behavior of ferromagnetic
material was first established by Jou]e] in 1842 when he observed the change
in Tength of a ferromagnetic bar upon magnetization. The inverse effect
(Villari effect) or the change in magnetization with applied tension was

2

reported in 1865.° There foilowed a rash of discoveries of magnetostrictive

effects and related inverse effects which were finally incorporated into a
coherent theory with the advent of'cnnventional magnetoelastic theory in the

early 1930'5‘3 Intensive research in the 1940's and 1950's established the

foundations of domain theory.4

Finally, a consistent thermodynamic treatment
of magnetoelastic interactions by Brown5 (1963) refined the conventionai
theory to its fairly sound foundation of the present day.

The shock induced anisotropy effect is a specific form of the general

piezomagnetic or inverse magnetostriction effect. Its contribution to the

1
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shock induced demagnetization problem was established by Royce6 (1966) while
investigating the maanetic response of nickel ferrite under shock loading.

7

Subsequent work by Royce’ and Shaner and Royce8 in the plastic region of

yttrium iron garnet and Seay et a].g in the elastic and plastic regions of
manganese zinc ferrite confirmed this conclusion. The effec* in single
crystal and polycrystal ferrites has been considered theoretically by

10,11 12

Bartel. Wayne, Samara, and Lefever = have observed a form of this effect

which occurs locally in porous ferromagnetic materiai subject to hydrostatic
preséure.

There has been continuing interest in this magnetic effect peculiar
to the realm of shock wave physics. The interest has recently been increased
by attempts to understand the magnetic response of natural and meteoritic
material under dynamic loading. This understanding is necessary to be confi-
dent in using magnetic techniques for investigation of the history and origin

of such materials.

1.2. Objectives

The work cited in the previous section represents a significant con-
tribution to the definition and understanding of the shock induced anisotropy
effect. However, it is the belief of this author that the extension of this
understanding to the prediction of the magnetic response of actual material
squect +0 shock loading requires a firmer quantitative foundation than is
now available. The intention of this work is to contribute theoretical and
experimental groundwork toward this foundation.

' The objectives undertaken in this work are as follows:  The necessary
. thermodynamics for a systematic description of the induced anisotropic ferro-

magnet will be developed. The shock induced anisotropy effect in single
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crystal ferromagnetic material will be considered by a consistent application
of the established tools of domain theory,' In particular, the contributions
of the exchange energy and demagnetizing energy will be determined. The
domain structure behind the shock wave will be deduced from this domain
theoretical analysis. Following this, the shock induced anisotropy effect in
polycrystailine ferromagnetic material will be considered. Integral in this
consideration is a critical analysis of the averaging process required to
predict the random behavior of the polycrystalline structure. The contribu-
tion due to finite strairn, a serious question in the region of large elastic
strain, will be determined. Finally, the effect of porosity on the macro-
scopic magnetic response of material subject to this effect will be addressedy

Further objectives of this wovrk are the design and implementation of
an experimental technique capable of measuring the magnetic state of the
shocked ferromagnetic material during the few tenths of a microsecond within
which this state exists. With this method data is accumulated in the region
of large elastic strain in yttrium iron garnet. Favorable magnetic properties
of yttrium iron garnet provide a critical comparison of experiment with

theory.i
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THERMODYNAMICS OF THE ANISOTROPIC FERROMAGNET

The effect of propagating a one dimensional shock wave through a
ferromagnetic material is to create a state of uniform uniaxial strain behind
the shock wave. This allows use of the thermodynamics of rigid ferromagnets5
in this region. This thermodynamic state is maintained by the inertial char-
acteristics of the material and is difficult to obtain by means other than
shock wave techniques. It will persist until perturbing waves subject the
region to further change. The goal is to predict the magnetic behavior in the
shocked region while it is still in a state of uniaxial strain.

The intent of this chapter is to develop consistently the thermody-
namics necessary to describe an anisotropic ferromagnet5 and to obtain the
magnetic work term along with the appropriate thermodynamic equilibrium and
stability criteria. A complete phenomenological energy expression will be
constructed.

This chapter contains nothing that is not already in the literature.
It represents a survey, from many sources, for a complete thermodynamic
description of the shock induced anisotropy effect. Its content is not neces-
sary for an understanding of the remaining chapters. The various thermodynamic
terms and expressions derived in this chapter and used throughout the text
have been collected in Appendix I for easy reference.

A thermodynamic approach through an energy expression rather than

through direct consideration of the forces involved will be used for several
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reasons. First, a phenomenological approach relating the forces directly
requires a stress hypothesis. Inherent in the stress formulation is a non-
uniqueness in that any second rank tensor with zero divergence can be added

to the stress tensor without affecting the equations of motion or the boundary
conditions. This is usually of little consequence. In magnetic material,
however, there is an additional complication to the nonuniqueness. This arises
in attempting to separate short range magnetic forces, which will contribute
to the stress, from long range magnetic forces, which will contribute to the
volume force. A magnetic pole formalism, an Amperian current formalism, or
any of several others gives different separation of magnetic stresses and mag-
netic volume forces.5 In a thermodynamic consideration, the energy expression
is unique and these complicating problems are avoided. Second, when forces
are considered directly stability is checked only with difficulty. In thermo-
dynamics stability emerges naturally and simply in the second variation of the

energy expv‘ession.]3

2.1. Magnetic Work

The magnetic work done on a magnetic system can be obtained by con-
sidering the work done by a source of emf and the related change in mugnetic
flux through Faraday's law. Alternately, one can obtain the same expression
from Maxwell's equations by somewhat more laborious methods. The two are, of
course, equivalent. The Jatter method will be used since this is the point at
which most electromagnetic texts prematurely terminate. Also, this methed
more clearly shows the points at which deviation from compliete generality
occurs.

The work expression

1 [ > 1 [z > >
oW = e HesB dV + Z—er-GD dav + [ J-Est dV (2.7)

™

.
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is obtained directly from Maxwell's equations.]4

-+ > > > >
H, B, E, D, and J are the usual field quantities of electromagnetic

Gaussian units are used and

theory. This expression assumes only that current changes are sufficiently
quasistatic so that negligible energy is lost from the system by radiation.
Nothing is assumed about linearity, reversibility, etc. in the magnetic mate-
rial. The three terms are, respectively, the magnetic work, the electric work,
and the work done in creating Joule heat by the true currents in the system.

If the ferromagnet is nonconductive and incapable of storing electric energy,

then only the first term

_ L +- >
Moo= o fH 68 dV (2.2)

is important.

The work done on the ferromagnet is stored in various forms of energy
or discipated in irreversible processes. The work expression in this form
does not show this partitioning. To proceed further, the magnetic field inten-

sity will be separated into two fields,

L+ 1y (2.3)

15

This is possible through a theorem due to Helmholtz. ﬁé is solenoidal and

is the particular solution of the equation

> > _ 91
b, = 24
and ﬁa is irrotational and is the particular solution of the equation
> > > >
V'Hd = -4."V'M-

+
In other words, He has as sources current carrying conductors such as would
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be used to magnetize the magnetic material and will hereafter be called the
external field. Ed has as sources surface and volume magnetic poles and
will be called the demagnetizing or dipolar field. It should be remembered
that an entirely equivalent partitioning can be done with the magnetic induc-
tion E. The development would then evolve around the concept of free
currents and Amperian currents. Although either method is acceptable, the
first is commonly used since it allows greater mathematical simplicity and

some physical insight depending on one's prejudices on magnetic pole concepts.

With this separation of the magnetic field intensity and with
> > >
GB = GH + 4“6”,

Equation (2.2) becomes
. £ 2 2 > >
o He Hd He-Hd
SW = HeeM + 65= + 65— + s—~—| dV.
8n 8n 4x

+
In the last term, Hd is irrotational and can be written as the gradient of

a scalar potential, O Integration by parts produces two terms. One con-
tains ;-ﬁé and is, therefore, zero and the other contains the total
divergence of ¢mﬁe and, therefore, transforms to a surface integral.

Assuming the system is localized so that "o and r2He are regular at infin-
ity demands that the integrand diminishes sufficiently fast so that the
surface integral must vanish. The other terms can be identified. The second
term is the work done in changing the external field energy and does not
depend on the magnetic material. This term will be excluded from thermody-
namic consideration of the ferromagnet. It is entirely a matter of bookkeeping

16

and does not create any problems. The third term is the magnetostatic

"self energy" of the ferromagnet. It represents the energy required to




construct the distritution of magnetic dipoles in the ferromagnet against the
dipole-dipole, "action at a distance" forces. This term differs from the
dipole-dipole energy only by the volume integral of a term which depends on

local conditions in the magnetic material and may be regarded as an energy

5

density.” The first term is either the work done in storing energy in local

form (expressible as a voiume integral of an energy density) or the work lost
in irreversible processes.

The final magnetic work is

N Hg
W = HesM dY + 5 g;-dv. (2.4)

Using two well known theorems from magne’cos'ca’cics,]7

Jr» -+ _
Hd-Bd dv = 0

and

Jr+ > Jﬁ+ >
Hd'GM dv = M'SHd dv,

the following useful forms for the magnetic work can be obtained

s o=l HeaMdV - £ s H,oMdv 5
—J.G —26 Hd'd (2')

or
> ->
W = He-sM dv. (2.6)

The latter is the form obtained directly from a consideration of Faraday's law

relating the emf to the flux change.5




2.2. Thermodynamic Laws

The combined first and second law of thermodynamics states that

- >
U < TeS +[He-aM dv

in a natural p\r'ocess.]3 For a ferromagnet constrained to S = S0 and

+ +

M = MO, this is

sU < 0.

Tre internal energy can only decrease. This law implies that a virtual varia-
tion of the energy with respect to internal coordinates must be zero
(thermodynamic equilibrium) and that this energy be already as small as
possible (thermodynamic stability).

The constraint on the magnetization is difficult to realize experi-
mentally. The controllable parameter is the external magnetic field, ﬁe'
The usual thermodynamic technique is to perform an appropriate Legendre trans-

foruation to an energy function with the controllable parameters as independent

vam‘ab]es.]3 The energy function to be used will be

_ f—)-r
E = U- He-M dv

and will be referred to simply as the energy.
> > -> ->
sE = sU - er-GHe dv - JrHe~6M dv

With the combined first and second law, this becomes

> >
6E < ToS - | Mesh, V.

-5

-
For a ferromagnet constrained to S = S0 and He = HeO’
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and the thermodynamic equilibrium and stability criteria in terms of this

energy are evident.

2.3. The Local Energy

It is the intent of this development to use the energy

> >
E = U-fHe’M dv (2.7)

along with the thermodynamic equilibrium and stability criteria to predict

equilibrium states for a rigid anisotropic ferromagnet. To do this, an

] explicit expression for U in terms of pertinent internal coordinates must

be obtained. U can be written

U = ED+_[€LOC dv (2.8)

where ED is either of the previously derived self energy expressions in
Equation (2.4) or Equation (2.5). The remaining energy depends only on local
conditions and can be written as the volume integral of an energy density.

It is this term that is now of concern.

The method used to obtain this local energy expression is to rely on
physics and microscopic models of the magnetic material to guide in the selec-
tion of mathematical forms and independent variables for the local energy.
Phenomenological methods such as convenient expansions and symmetry require-

5

ments are then used to deduce precise forms for the energy expression.

The dominant local energies in a ferromagnet have been classified as

the exchange energy, the magnetocrystalline anisotropy energy, the magneto-
elastic energy, and the elastic energy.4 Each will be considered in order.
The exchange energy has a purely quantum mechanical origin. It can

be traced to the requirement of antisymmetry of the electronic state of the




[

magnetic ions under interchange of any two e]ectrons.]8 In considering the
interaction of any two magnetic ions, the antisymmetry requirement prcduces a
splitting of energy levels making parallel and antiparallel spin alignment
energetically separate. In a magnetic material at normal temperatures, only
the Tower lying energy states will be abundantly populated so the complete
Hamiltonian may be replaced by an “"effective spin Hamiltonian" which has as
its energy eigenvalues these several low lying states.]9 Between any two mag-

netic ions, this effective spin Hamiltonian can be written as

Jij is the exchange integral which determines the splitting of the low lying
states.20 If Jij is a positive quantity, parallel spin is a lower energy
state and ferromagnetism resuits. For Jij negative, antiparalliel spin is a
Tower energy state and antiferromagnetism results. The Hamiltonian for the

entire crystal is

. = 2L 3355,

1J

This exchange energy gives rise to a very strong but short range interaction
causing a cooperative alignment of magnetic dipoles and hence a spontaneous
macroscopic magnetization in the material. The magnitude of this magnetiza-

21

tion has been found, with few exceptions, to be isotropic™ and to depend

mainly on the temperature22 and to some extent on the pressure in the medium.23
The small pressure dependence is considered in Section 4.5 To make an

adequate selection of thermodynamic variables upon which the macroscopic
expression for the exchange energy will depend, one can look to the result of

a simple model. The following model wili sugyest that the gradients of the

components of the magnetization or, alternatively, the gradients of the

= e (B

—




12

22

direction cosines will be the proper tnermodynamic variables. Consider a

simple cubic ferrsmagnetic material in which the exchange integral is iso-

tropic.
. > >
. - -ZJ% S

If the spin directions change gradually so that adjacent spins differ by

small angles, the quantum spin operators may be replaced by classical angular

momentum vectors.

->
E o= -2 Y oeo.
ij '

where o5 is a unit vector in the direction of spin j.
> >
oty = cos¢ij

may be expanded giving

E = -2082 %, (1 - Has - a:)9)
g 21 J
1J

+ >
= 2052 L, (1 - Hr,ava)?),
T4 ]
1]
> > >
where rij is a vector between magnetic ions having spin Si and Sj and

+ .
o is extended to a ccntinuous function of position. If only nearest neigh-
bor interactions are assumed and the sum is extended over six nearest

neighbors,

S CRCRC
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Other terms in the sum are zero because of cubic symmetry. Dropping the

constant term and allowing N magnetic atoms per unit volume, the energy

dansity becomes

2 >12 +\2
= 2352 3a 3
b = a5+ (8] 2]

This suggests that in more general cases the functional dependence of the

exchange energy will be

—)
£ aa a_a sa
ex\ax’ a3y’ 8z

In ferrimagnetic materials, which include spinel structures such as nickel
ferrite and manganese zinc ferrite and garnet structures such as yttrium iron
garnet, this exchange phenomenon becomes somewhat more complicated. The com-
plication arises from the existence of diamagnetic cations regularly dispersed
throughout the lattice. The exchange interaction between magnetic anions is
coupled through these diamagnetic cations. Due to the large separation of the
magnetic ions, there i3 smaller overlap of state functions and the exchange
integral is negative. This type of exchange exhibited in ferrimagnetic mate-
rials is called superexchange and results in an antiferromagnetic alignment
of electron spins.24 it is found, however, that, as in the ferromagnetic
case, the total Hamiltonian can again be conveniently replaced by an effec-
tive spin Hamiltonian. But, each different magnetic sublattice must be
treated separately. We may still expect that a macroscopic expression for

the exchange energy will be functionally dependent on the magnetization
gradients.

It is observed in ferromagnetic materials that under zero applied

2
field magnetic domains 1ie along preferred crystal dir‘ections.‘5 Work must
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be done on the system to rotate magnetic domains out of these directions. The
local energy term associated with this interaction has been named the magneto-
crystalline anisotropy energy. It has beer observed that this energy term
does not affect the magnitude of the saturation magnetization and depends only
on the direction of the saturation magnetization relative to the local crys-

tallographic axis.26

This is a consequence of the fact that the exchange
energy is much larger than the anisotropy energy and depends on the inner
product of spin operators which are isotropic. Microscopically, the dominant
contributing interaction to this energy is through single ion interaction with

the crystal 1att1’ce.26

The spin-orbit coupling prefers a colinear alignment
of electron spin and orbital angular mementum while tk2 orbital charge cloud
adjusts itself in the crystal field to minimize electrostatic energy. Thus,
the spin magnetic moment sees the crystal lattice through the spin orbit
coupling.

The magnetoelastic energy has the same origin as the magnetocrystal-
lire anisotropy energy. It is a consequence of the fact that the anisotropy
energy is dependent on the lattice dimensiuons To distort the crystal lat-

tice in any way may change the anisotropy energy. This energy deviation from

some reference lattice spacing is separated out as the magnetoelastic energy.4

To reemphasize, the purpose of the previous rhysical discussion of
the microscopic origins of the various energy terms was to guide in the selec-
tion of an adequate set of thermodynamic variables. The energy will then be
a function of these variables. It was concluded that the gradient of the mag-
netization is a reasonable choice for the continuum dependence of the exchange
energy. The anisotropy energy depended on the orientation of the elemental
magnetic moment within the unit cell. Hence, the magnetization vector is the

logical variable. For the elastic strain, the deformation gradients will be
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selected. The functional dependence of the local energy density is

(axi Bai)
s G:s 7| (2.9)
LOC aaj i aaj

where X; are the space or Eulerian coordinates and a. are the material or

J
27

Lagrangian coordinates. It should be noted that in a purely phenomenologi-

cal formulation higher order derivatives of X; and o should properly be

included. |

2.4. Phenomenological Expression |

A phenomenological expansion of the energy in a Taylor series at this
point would be premature. The problem is that ELOC cannot be an arbitrary
function of the chosen variables but must satisfy the physically obvious in-
variance of a rigid rotation of the mass element dm. This would restrict

the form of the property tensors obtained from the Taylor uxpansion. To cir-

cumvent this problem, the functional dependence of ELOC will be recast in

terms of new variables under which ELOC can be an arbitrary 1’unct1‘on.28

This will be accomplished with a theorem due to Cauchy.29
Theorem.--Any function, f(V], c e e Vn), invariant under a rigid

> >
rotation of the system of vectors, V], 0 o op Vn’ can be expressed as a

¥

+
function of the various quantities Va-VB (¢, B same or different) or

>

VXV d y diff
Va-VBxVY (ay, B, and y different).

gLOC is a function of seven vectors.
> > > > > >
E - ar ar ar ; oa 90 2a
LOC LOC aa] aaz ad3 aa] aaz 3a3

A sufficient choice of independent variables from Cauchy's theorem gives the

functional dependence




€ oc(Eij
where

£ 1

Eij = z(

is the finite strain tensor,

* -

%3
and

These thermodynamic variables are not

rem but are the ones usually selected.

set.)
In terms of these variables,

expansion in the usual manner yie'ds

ELOC is arbitrary.
30

(2.10)

(2.11)

(2.12)

the only ones allowed by Cauchy's theo-

(See Brown5 for a more fundamental

A phenomenological

€loc =Eloc(S) * 9lak, §) + gy5(a, SIEG + o1 845 (s S5y
;' g1Jk1wn( p’ S)E1J k] m - F xijGij 1Jk1E1JGk1
+ .
where
9(a*, S) = Kjaled + o7 Kijqoreqoe * - - -
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* % k *

* _ **i
955(ans 8) = 835(S) * byspqapay + oy by qpnaaopa + L.,

* _ * *
955k 80 = Ciir ¥ Biskamntnoy * oee o

and

* -
%jkimn(®p* ) = Cijpimn *
The various phenomenological constants relate to physical properties and have

been accordingly named. The following catalogues those material properties.

Kij’ Kijk] -- various order anisotropy constants
Bij(s) -- related to thermal strains

bijk] -- first order magnetostrictive constants
bijklmn -- Becker-Doring constants

Cijk] -- adiabatic elastic moduli

Bijk]mn -- second order ME constants

Cijk]mn -- third order elastic moduli

Aij -- exchange constants

Aijk] -- exchange striction constants

The number of independent elements in the property tensors is reduced
by invoking cymmetry requirements. They are thermodynamic symmetry which
equates certain derivatives of the energy by interchanging the order of dif-
ferentiation, crystal symmetry which is determined by operators of the crystal
class of interest, and magnetic symmetry which is determined by the particular

30 (which includes

magnetic pcint group. The expression for cubic symmetry
YIG), correct to second order in magnetoelastic terms and third order in

mechanical terms, is
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_ 0 2
Eloc =€Loc(S) * B(Ey + Epp + Egg) + 5 11(511 O, ¢ By

2

2
+ Cyp(EqqEpy + Expbgy + Eggbyg) + 204, (E5s + E5

2
1+ Epp)

1 3

3 3,1
g CmEy +Ep +

E33) + 7 CpplEqy (Epp + Egg) + Ey(Egy * Epy)

2 2 2 2
E33(Eyy + Epp)) + CypaByqEppbag + 2014, (EqqEg + EpoFqy + Egafly)

+

+

2 2 2
20155((Eqq + Exp)Ey, + (Eyp + Egg)Eoy + (Eg3 + Eqq)Eg,

*2 *2

*
2095 + E33u3 %) + 2bgq(Epgunaz + Ezpoze]

+

by1(Eqoq” + E

2 %2 2 *2 2 *2

* % 1 *2
E1o010p) + 7 Bypq(Ejqoq” + Ep05” + E3qu3”) + Byoa(EqqEppus

+

*2 *2
3391 * E33Epq057) + 2By (EqqEpqa

* %

* %
203 * Eyobzjage

+

32

22

+

* %
Eg3E1p070p) + 2Bygg((Eqq + Epp)Eqpafay + (Ep, + Egp)E,zabal

2 %2

2 %2
241 (Ep3% ?)

3% * E12

+

(533 +E a§) + 2B +E

*
11)E3193

*2 *2

+

4By56(Ep3Egyajon *+ Eq Eqp030y + EpoEpzaiod) + Ky (a)

-

2 + ‘V o

+

+ |V
a%3

%2 %2 *2 +2 27
o, + az o ) + — 5 (‘V a3

2
o (2.13)
2 MS )

Keeping terms to lowest order, although not entirely consistently, one

3

ohtains the original expression of Becker and Doring™ from conventional mag-

netoelastic theory plus the exchange energy.
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(o = 1 2 2 2
floc = 7 Cnileqy tegp tegg) +cqylegge,, esseas +oegaegg)

2 .2 .2 2 2 2
t 2cyy(ens + €3y + e7,) + bylegja) + eyp05 + €3303)

22, 22
* 2by(eypayap + epgapag + €370307) *+ Kylafol + afaj

2

. 2

+ a§a%) + A( +

Yoy 2) (2.14)

> >
Va] Vaz

where by = Dby, by, = byg> and A = ZNA/ME.

There is a reason for developing the energy expression through a
finite strain formalism. The conventional magnetoelastic energy expression,
Equation (2.14), was obtained by adding the energy of a magnetic rigid solid
to the energy of a nonmagnetic elastic solid and then superposing an interac-
tion term to describe the magnetoelastic effect. It has been pointed out that
this expression does not contain sufficient terms to properly account for the
energy to the order of strain assumed.5 The success of the conventional mag-
netoelastic expression can be attributed to the extremely low strains (m10-5)
existing in usual magnetostrictive phenomenon. One worries whether it will be
sufficient to describe the behavior for the quite high strains (mlO'z) which
prevail in the present inverse magnetostrictive effect. Although conventional
magnetoelastic theory will be used in the subsequent chapter, the effect of
finite strain will be seriously considered in the appendix.

In summary, a complete energy expression for an anisotropic ferromag-

net has been obtained.

Ty

12> > >
E = ~]k€LOC - ?-Hd-M - e-M) dv (2.15)

With this expression and thermodynamic equilibrium and stability criteria,

magnetic equilibrium properties can, in principle, he predicted.




CHAPTER III
APPLICATION TO THE SHOCK INDUCED ANISOTROPY EFFECT

Passage of a shock wave through an infinite half space of ferromag-
netic material creates, behind the shock, an infinite slab of ferromagnetic
material in a state of uniaxial magnetic anisotropy normal to the plane of the
slab. An external magnetic field is applied along a direction in the olane of
the slab and, hence, orthogonal to the axis of uniaxial strain as seen in
Figure 3.1. This chapter will utilize the thermodynamic tools developed in
the preceding chapter to predict the magnetic behavior of a ferromagnet sub-
ject to this unique effect.

To proceed from the given energy expression to the final prediction of
a magnetization curve in a given magnetic problem requires considerable effort
and has been the subject of much theoretical investigation for many yearé.

There have been basically two theoretical approaches to the problem. The more

J

Fig. 3.1.--Shock created anisotropic ferromagnet.

20
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contemporary theory is referred to as micromagnetism.3] It assaults the

energy minimization problem through calculus of variation techniques. This

theory is more general; capable, in principle, of predicting domain walls,

|
|

hysteresis, Barkhausen jumps, and other characteristic ferromagnetic proper-
ties. Its usefulness, however, is limited by the extreme complexity of the

mathematics involved and 1ittle progress has been made except in the simplest {

geometries.

The other approach is domain theory.4’32

It has enjoyed wider accept- ,
ance due to its ability to provide useful predictions in practical magnetic
problems. Domain theory avoids the difficult mathematics brought about by the
calculus of variation methods. This is accomplished by postulating the pres-
ence of domain walls in the material and considering the exchange energy as
localized in these walls. Success of this theory rests on the ingenuity and
experience of the theoretician since he must determine by extratheoretical
considerétion the domain goemetry which will create the lowest energy.

This chapter will proceed by considering the shock induced an"sotropy
effect in single crystal material. The problem will be analyzed with estab-
lished tools of domain theory and by these methods will be carried to its
logical conclusion. The next step toward predicting the magnetic behavior in
real material is the consideration of a theoretically dense polycrystal with
random texture. This problem is explored and the averaging procedures relating
single crystal behavior to polycrystai behavior are defined. Following this
will be a brief review of the success of micromagnetic theory in exploring
the anisotropy effect. In the last section the perturbing problem of porosity,

present in all natural material, is considered.
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3.1._ Domain Theoretical Calculation (Single Crystal)

Consistent with domain theory, the volume integral in the energy ex-
pression for the anisotropic ferromagnet will be ignored. Instead, the total

energy sufficient for predicting magnetic equilibrium states will be written.
€ o= gy

where each term refers to an energy density. The first term is the exchange
energy while the second i5 the crystalline and magnetoelastic anisotropy

12> > . . . ¥ ¥ s
energy. Ed = - §'Hd'M is the demagnetizing energy. EH = -He.M is the
additional term included by the Legendre transformation and is just the inter-
action energy of the ferromagnet with the external magnetic field. It will be
necessary to obtain each term for the problem of interest.

The total anisotropy energy from conventional magnetoelastic theory is
= 2 22 22 2 2 2
A = Kylojop + ajog + a3ay) * bylajeyy + age,, + azeqs)
* 2, (aqazeyy + apugeys + agajey)).

* —> -
Uniaxial strain along a line colinear with the unit vector n can be written

in the tensor form

where e (po/p) -1 1is the extension27 aiong the direction of uniaxial

strain. n is arbitrarily oriented with respect to the crystal axis. In the
present work, interest lies in shock induced anisotropy. In shock wave
studies, strains in the large elastic and plastic regions are obtained. Thus,
for many magnetic materials, the crystalline anisotropy energy is 10 to 30

times smaller than the induced anisotropy energy in this strain region.
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Therefore, the crystalline anisotropy energy will be ignored. The anisotropy
energy of interest becomes

£ = b]e(a$n$ + agn

2
me 2

+ ugng) + 2b2e(a]a2n]n2
+ unlaNoNg + u3a]n3n]). (3.1) {

To proceed with the domain theory analysis of the shock induced ani-
sotropy effect, two single crystal problems will be treated concurrently.
These will be called the <100> problem and the <111> problem. The <'00>
problem corresponds to a state of uniaxial strain along a <100> axis with <
perpendicular applied fieid. The <111> problem corresponds to a state of
uniaxial strain along a <111> axis with a perpendicular applied field. These
two fundamental problems have their analogs in the thermodynamic inverse of
this efrect. They are magnetostriction along the <100> and <111> axes.4
The magnetoelastic constants, b] and b2’ will be found to relate in a
similar way to the magnetostriction constants. Moo and M1

In the spirit of domain theory, models for the domain structure must
be postulated. Energies corresponding to each model are then obtained and
compared. From this, conclusions are drawn as to the most probable domain

structure. Figure 3.2 shows the domain structure models which will be con-

sidered. Domain walls normal to the strain axis are not expected. This is I

because the variation in the magnetization direction through the domain wall
> > >
cannot be made without allowing veM to deviate from zero. v:M # 0 in

the domain wall implies magnetic volume poles in the wall and, hence, a high

demagnetizing energy. This would be energetically unfavorable. Domains of

ciosure are not expected due to the high induced anisotropy energy.
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5

3.1.1. Induced Anisotropy Energy

The induced anisotropy energies for the <100> probiem and the <i1'>
problem will be obtained in this section. The energy will be obtained within
domains and within the walls through which the transition between adjacent
domains is made. This will be done for walls of the form shown in Figure
3.2(a) and Figure 3.2(b).

Consider first the <100> problem and the domain walls in Figure

3.2(a). Transform Equation (3.1) to polar coordinates using

ey T sinecos¢, ay = singsing, and a3 = COSH.

The induced anisotropy energy in a domain is easily obtained.

<100>
c.'!!e

(domain) = b1e sinze.

+
To obtain the induced anisotropy energy in the wall, the variation in M

through the wall must be considered. The requirement that ;-ﬁ = 0 through
the wall is equivalent to demarding that 6 be Cunstant through the wall.
The transition between adjacent domains then proceeds by a rotation of ¢

from 0 to w. The energy in the wall is

<100> _ . 2 2
eme = b;e sin“ecos®s.

A slightly more difficult analysis gives for the <111> problem

<111> . _ . 2
cme (domain) = bye sin“e

and 2

<111>  _ 2
€me 8c0os“¢.

= b2e sin

Since the form of the energies is the same for the <100> problem and the

<111> probiem, we will write
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(c) He

Fig. 3.2.--(a) Model for plate-like domain structure perpendicular to
the applied field

(b) Model for plate-like domain structure parallel to the
applied field

(c) Model for needle shaped domain structure oriented along
axis of uniaxial strain. Polar angles define direction
of magnetization during transition through domain wall.
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€ (domain) = be sin (3.2)

me

and
ry . 2 2

Enm = be sin“8cos“¢ (3.3)
where b = b] or b2 for the <100> problem or the <111> problem,
respectively.

Consider the domain configuration in Figure 3.2(b).

in the domain is

€me(domain) =

The transition through the wall

concinuously from -8 to .

¢ =

me

Equation (3.2), Equation (3.3),

derived in this section.

3.4

Again the energy

be sinze.

L)

proceeds in the (x,z) plane by varying 3

The energy in the wall is

2

be sin“g, -6 <& <. (3.4)

and Equation (3.4) are the primary equations

.2. Exchange Energy

Within the concepts of domain theory, the exchange energy is believed

to reside only in the domain walls or transition regions between adjacent do-

mains.

Landau-Lifshitz domain wall calculation.

the 1iterature22’32

and will be described only briefly here.

The usual method for obtaining this domain wall energy is through a

e This has been fuliy developed in

The method con-

sists of writing a one dimensional integrai expressicn for the energy in the

transition recion between domains.

The terms which contribute to the wall

energy are the exchange energy and the excess crystalline or magnetoelastic

anisotropy energy incurred by the transition through the wall.

It is assumed
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that 3); = 0 (e = constant) holds through the wall. This one dimension-
al integral energy expression is minimized by variaticnal calculus. The
result predicts that at all points within the wall the exchange energy is
equal to the excess anisotropy energy. It is found that the wall energy per
unit area is given by
%,
o, = 2/A sinef |(€me(domain) - Cme)%l dé. (3.5)
%

The crystal anisotropy energy has not been considered. A is again the ex-
change constant and ¢ and ¢2 are the azimuthal orientation of the mag-
netization in the adjacent domains separated by the wall.

In this section, the domain wall energies in Figure 3.2(a) and Figure
3.2(b) will be obtained. They will be called 03 and OS, respectively. For
Figure 3.2(a), using Equation (3.2) and Equation (3.3) with Equation (3.5)

gives

m
of = 2/ATbe] sine f sineds
0

or

oS = 4/ATbel sine (3.6)

For Figure 3.2(b), using Equation (3.2) and Equation (3.4) with Equa-
tion (3.5) gives

Making the substitution

sin X = sin6sing = a sing

o
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and using the identity

coszx = (1 - J?J + -l-(l - al sinzx),

a a2

one obtains

/2 n/2

05 = 4vﬂ|5e|(a2 - ])‘]- 5 dx 7172 + _]’(1 - a2 sinzx)”2 dx.
(1 - a® sin“x)

0 ]

This is
oP = 4/ATbeT((a” - 1) K(a, w/2) + E(a, 7/2))

where a = sine and X and E are complete elliptic integrals of the

first and second kind.

03 and 03 are compared in Figure 3.3. It is seen that ihe domain

model considered in Figure 3.2(b) yields a slightly lower energy. In actual

crystalline material, imperfections such as dislocation, impurity, etc. can
significantly alter the domain wall energy. For this reason, it is believed
that the slight energy difference does not justify the prediction of the do-
main structure in Figure 3.2(b) over that in Figure 2.2(a). From this, one
may conciude that domain theory suggests a needle or sliver shaped domain
structure oriented along the axis of uniaxial strain will nucleate behind the
shock front. A model for this structure is shown in Figure 3.2(c).

Due to the much simpler form of Equation (3.6), the approximation

P o~ S = =] . 2
Oy = Ty O 4¢A|be| sing

will be made. An expression for the effective exchange energy density is

given by
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tex = D
or
:M‘[E.['Z
gex 5 sin“e
where D is the dimension of a domain as shown in Figure 3.2(c). 1
1.0 «
s
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Fig. 3.3.--Domain wall energy as a function of 6.

03 corresponds to the wall geometry in Fig. 3.2(a); 03

corresponds to the wall geometry in Fig. 3.2(b).
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3.1.3. Demagnetizing Enfrgy
The demagnetizing energy can be obtained by solving the magnetostatic
boundary value problem for the magnetic surface pole distribution on two sur-
faces separated a distance L as is indicated in Figure 3.2(c). The solution

4

requires only a slight variation on a precblem already solved by Kittel.” Only

the result will be “eported here. It is approximately giver by

2
DMS 2

Ed = 1.1 | sin 8.
The approximation results from terminating an infinite series. Again L is
the slab thickness, D is the domain dimension, and MS is the saturation

magnetization.

3.1.4. Total! Energy
From the results of Sections 3.1.1, 3.1.2, and 3.1.3, the total ther-
modynamic energy for the ferromagnetic material behind the shock front can be

explicitly written. The total eneryy is

2
. DM -
£(D,0) = -MSHe coso + be sin‘e + 1.1 —t§-sin29 + §£E%§§I sin"s. (3.7)

Equilibrium thermodynamics predicts that the energy expression,
£(D,e), will be a minimum with respect to a variation of the internal coordi-
nates, D and 6. Consider the domain width parameter first. Minimizing

with respect to D gives

2
M .
g—g— = 1.1Tssin26-sin26 = 0.

This yields un expression for the domain width.
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3 - ()" ?

2
1.1 MS
This can be substituted into Equation (3.7) giving :
1
,  [8.eMATRer|/E
€(e) = - MH, coss +be sin“e + 2 — sin“e i
|
or
E(e) = - MM, cose + be sin% + y|e|/* sin% (3.8)
where

L

. z[s.sngmﬂ]”z.
The last term in Equation (3.8) will be called the equilibrium exchange and
demagnetizing energy.
At this point a discussion of the results obtained so far is warranted.
An estimate of the exchange constant can be obtained from molecular field
22

theory. This is

3kTC

e za

where k 1is Boltzmann's constant, TC is the Curie or Néel temperature, z

is the number of nearest neighbors, and a is the lattice constant. This

7

gives A = 3 x 10" erg/cm 1in YIG. At a strain of -.01 in YIG which

corresponds to a shock pressure of about 25 kilobars, the predicted domain
1

width is approximately 20 uron. This is in agreement with other work.
The equilibrium exchange and demagnetizing energy in Equation (3.8) is ob- 1 ‘

served to increase as the fourth root of the strain while the induced anisotropy 1
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energy increases linearly with the strain. This suggests that the equilibrium
exchange and demagnetizing energy is about 2% of the induced anisotropy
energy. This justifies ignoring the equilibrium exchange and demagnetizing
energy in predicting magnetic behavior in the region of large elastic and

plastic strain in YIG as was done by Royce7 and Barte].]0

It is realized that
this statement need not hold true for all materials.
From the total thermodynamic energy, Equation (3.8), the equilibrium

magnetization curve can be obtained. Thermodynamic equilibiium demands that

df€ _
de 0.
This has two solutions;
sine = 0

and, ignoring exchange and dipolar energy,
2be coss + HeMs = 0.

Thermodynamic stability requires that

2
9—§ = 2be(cosze - sinze) +HM cose > 0
de” €s
at the equilibrium colution. For the solution sine = 0, this implies that

Z2be + HeMS > 0.

Under shock induced anisotropy, this would always be the stable solutior for
material with negative magnetoelastic constants. For material with positive
magnetoelastic constants, this solution becomes unstable at a nucleation

field of Hnuc = - 2be/MS. The subsequent behavior is then given by the
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second equilibrium solution. The predicted magnetization curve is

2be
1 for He > =9
M S
T . (3.9)
S
S Zbe
= ﬁ)—e- He for He < - —M—S'

where M/MS = cos6 and b = b] for the <100> problemor b = b2 for

the <111> problem. The curves are shown in Figure 3.5.

3.2. Domain Theoretical Calculation (Polycrystal)

This development will proceed by considering the equivalent shock
induced anisotropy effect in theoretically dense isotropic cubic polycrystal-
line ferromagnetic material. This will be accomplished from knowledge of the
single crystal magnetic properties. Also, this should be a better approxima-
tion than the single crystal analysis of the preceding section to the magnetic
behavior of commercial and natural material subject to this effect.

The prediction of a polycrystalline materiaT property from its equi-
valent single crystal propeity is a problem confronted in many areas of
physics. The approach, quite similar in every case, reguires an averaging of
the single crystal property for an arbitrarily oriented crystallite over all

crystal orientations.34

The complicating factor is that an arbitrary crystal-
lite interacts, not only with the external forces, but also with other grains
in the polycrystal. This grain-grain interaction can be mechanical (through
stresses), electrical, or magnetic. In most cases, this complicated interac-
tion is not known.

Examples are elastic constants, dielectric constants, magnetostriction

constants, and conductivities. In each case basic assumptions concerning the

grain-grain interaction must be defined before progress can be made. For

R IR D T e ) R T TR, |

-
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instance, in the case of elastic constants,35 two assumptions have been used.

One assumption is that uniform str'ain36

exists throughout the crystal. The
other is that uniform stress37 prevails. Experiment favors neither, usually
being closer to an arithmetic average of the results of the two assumptions.

The same assumptions are made in obtaining polycrystalline magnetostriction
38,39,40,41

constants. In this case experiment favors the assumption of uni-

form stress.

In the present problem, the state of strain behind a plane shock wave
in a theoretically dense cubic polycrystal is assumed to be uniform. (See
Appendix V.) The speculation involves the magnetic grain-grain interaction.

This is a complicated many body interaction of current interest UERE

about
which Tittle is known. In analogy to the previous examples, this development
will define the extreme assumptions regarding the grain-grain interaction and
then consider each individually.

One extreme is that material crystallites interact with sufficient

strength to cause a cooperative, colinear alignment of the grains' magnetiza-

tion vectors. The other extreme is that grain-grain interactions are
negligible and that each grain individualiy seeks eguilibrium determined by
the requirements of the anisotropy field and external magretic field. These
assumptions will be called the interacting grain assumption and the independ-

ent grain assumption, respectively.

3.2.1. Interacting Grain Assumpiion
The interacting grain assumption will be considered first. This
assumption was made by Royce7’8 during pioneering work on the shock induced
anisotropy effect and leads to a mathematically tractable averaging process.
Domain structure in a polycrystalline ferromagnet is usually on an

a4

intra-grain scale. This is due to high crystal anisotropy energy and large
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angle grain boundaries which make continuous domains across grain boundaries
energetically unfavorable. There are cases, however, such as in material
subject to cold working, in which a high degree of crystal orientation allows
an extra-grain domain structure.4 In the present effect, the easy direction
of magnetization is determined not only by the crystallographic axis but also
by the direction of uniaxial strain. Thus, the effect of the shock wave is to
create a condition of magnetic texture defined by the direction of uniaxial
strain behind the shock wave. It would not be iinplausible to expect an extra-
grain domain structure to nucleate after passage of the shock wave.

A further argument for this assumption follows by considering a spheri-
cal grain interior to a domain of uniform magnetization. The magnetization in
this grain could deviate from this direction of uniform magnetization only by
creating surface poles on the grain boundary. The energy associated with this
is

- 4n 2
€ = - 3 MS C0s0.

In YIG, at typical shock stresses, this energy is of the same order as the
strain induced anisotropy energy. Hence, there will be strong torques
attempting to maintain uniform magnetization throughout the domain.

The following assumption simplifies the averaging process and creates
a neat form for the maaretoelastic energy of a polycrystal. it is assumed
that E';e is uniform throughout the field.

To proceed with the averaging process, the six dependent variables,
Ops Gny G35 Ny Ny, and Ny, appearing in the energy expression will be ex-
pressed in terms of four independent angular variables as shown in Figure

3.4.34’45 The direction cosines are related to the angular variables by

e iy N SR N K Ak

T e A
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% = sinxcoss, a4 = sinising, @3 = CosA,
Ny = costsinicosg + sing(cosxcosscosw + singsiny),
N, = costsinising + sing(cosAsinBcosw - COosBsiny),
and
Ny = cOsEcosx - singsinxcosw.

Since the polycrystai is isotropic,

glz-sinx dxdgdy
I

is the probability that the magnetization 1ies in the range A to j + da

Fig. 3.4.--Independent angular coordi-
nates for representing anisotropy energy.
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Lt

2n
flg) = fff f(g, A, B, ¥) sinadadgdy.
0 0

0

Various averages will be required and are tabulated in Table 1.

TABLE 1 --Average values of various terms appearing
in the energy expression

f(e, X, 8, ) (&)
29 22. 22 1
EEg 7 g 1 BE) 5
22 . 22. 22 1, 2.2
Sy Gl el ERLRCA ol
n, +a NN, + a,a,N,N = —l-+ —§-C052£
Bty o7 S il 57 Ceidfiy 0% 70
2 24 24 3,12 2
any +asny + aqng 35 ¥ 35 C0S'E
? y 2 _] _3. “"2
S ER I 7 SN (R Gl [ (0 o T Bl
222 . 222 222 3 2 2
ANy + aaghy + ajasng 35 - 35 €05 &

From this table, the average value of the anisotropy energy from con-
ventional magnetoeiastic theory, Equation (3.1}, can immediately be written

down. It is

€, - ]gK] + Be cos’E. (3.10)

where

The crystal ani-_.ropy energy averages to a constant and does not contribute
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to the effect. The total energy expression for a ferromagnetic polycrystal,

assuming interacting grains, takes the simple form
€ = Be sine - HM_ cose, (3.11)

as in the single crystal cases with b replaced by B, since 6 and ¢
are complementary angles. Thus, thermedynamic equilibrium predicts a Jinear

equilibrium magrnetization curve for the interacting grain assumption,

2Be
1. He > g
M S
M_' = M (3.]2)
< - =K H < - 28e
2Be ¢’ e Ms

intermediate between the extremes defined by the <100> preblem and the

<111> probiem in the equivaient singie crystal behavier.

3.2.2. Independent Grain Assumption
It is cuite possible that the uniform magnetization field demanded by
the previcus assumption does not occur. The isolated single particle critical
size within which a single domain exists for YIG is less than 1 micron. This
size will increase for a bounded crystallite due to a substantial decrease in
eurface poles at the grain boundary, but not by more than an order of magni-

tude.42

Also, the singie crystal domain width predicted previously, Equation
(3.8), was approximately 20 microns. The grain size of the material used in
the present work ranged from 5 to 25 wmicrons. This suggests that perhaps an
intra-grain domain structure would nucleate in order to red:ice magnetic poles

which would otherwise cnllect heavily along grain boundaries.42’44

This 1is
usually the case for unstrained material and may possibly occur in the mate-

rial behind the shock front. If an intra-grain domain structure occurred,
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there would not be a prevailing magnetic field as was considered in the inter-
acting grain assumption. In this case it would be more likely that each grain
would distribute about some average depending on the orientation of its crys-
taliographic axis with the external fieids.

A simple consideration will show that, if independent grain conditions
obtain, then the average magnetoelastic energy previously obtained in the
interacting grain assumption is too high. The energy from the interacting
grain assumption contained not only a part necessary to bring individual mag-
netic grains to their independent equilibrium positions, but also a part
required to bring these magnetic grains into colinear alignment. Too large an
induced anisotropy energy would then predict too much demagnetization.

The independent grain assumption is that each crystallite seeks equi-
Tibrium subject only to the requirements of the induced anisotropy field and
the external magnetic field and independent of the behavior of neighboring
crystallites. A rigorous approach to the averaging procedure weuld be to
express the magnetization direction in the anisotropy energy expression, Equa-
tion (3.1), in terms of polar coordinates 6 and ¢. The total enzrgy ex-
pression shculd then be minimized with respect to 6 and ¢ for an arbi-
trarily oriented crystallite. The resulting magnetization projection along
the direction of the applied field should then be averaged over &ll crystal
orientations. This problem, which has been encountered previously in another
context, cannot be solived expiicitiy for 8 and ¢ and has not been com-

p!eted.40

An alternate approach, in the spirit of calculations made by Lee,46

is to write the average normalized magnetization,
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F() cosedn
cose = (3.13)

fF(Q) do ’

in terms of an unknown distribution function of the magnetization vector

dii-ections throughout the solid angle. A first harmonic assumption for the
distribution function is that F(Q) 1is uniform throughout the solid angle
defined by the extreme angles from the <100> problem and the <111> problem.

These were

M M
_ _S = - S
cose] = - 2b]e He and cose2 2b2e He'

F(a) 1is zero otherwise. This first harmonic approximation gives for the

average value

%2 X1
fcosesinede x dx
) X

cose = e] = x2
2 1
j sinede dx
% X2

where x = co0s8. A problem occurs when Cos6, is unity at which point the

first grains reach saturation. To freeze the upper 1imit of integration arti-
ficially constrains the distribution function. This problem can be circum-
vented by allowing the upper 1imit to continue but demanding that the

respective contribution to cose be unity. This gives




x;-ﬁ "
w—d
[« 8
>

cos8 = ¢

Performing the integration gives

4

1
§(x] + xz) for X

coss = ﬁ
%{xg - 2x] +1)

for

[ Xo = Xy
This will be expressed in the final form by

4

e

]
§(n] + n,H,  for nyH
M
M 11,22
5 (nSHE - 2nqH  + 1)
2''2e 1e for
L (nz'n])He
where
M
n_l :..__S_.- and n2=
Zb]e
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The predicted magnetization curve is linear until “1He = 1. (See
Figure 3.5.) 1In this region it has the same form as obtained in the inter-

acting grain theory,

except B 1is given by the arithmetic mean,

The subsequent magnetization curve joins continuously to first and second
order but approaches saturation more slowly than the interacting grain magnet-
ization curve.

In the case of magnetoelastic isotropy (b] = bz}, the independent
grain theory degenerates to the predicted curve for the interacting grain
theory. The predicted magnetization curves for the two assumptions along with

those fer the -100> and <11i> problems are shown in Figure 3.5 for YIG.

3.3. Micromagnetic Theory

The intention in this section is to review briefly the concepts of
micronagnetic theory and its progress concerning the shock induced anisotropy
effect. The theory proceeds by invoking the thermodynamic equilibrium postu-

late on the total integral energy expression, Equation (2.15).3]’47

The
resulting variation, accomplished by calculus of variation techniques, yields
Brown's equations which, along with the corresponding magnetostatic boundary
value problem, constitute a system of nonlirear differential equations for the
magnetization field thro.ghout the material parameterized on the external

applied field He'
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Since this system of equations is nonlinear, for a given He many
solutions are allowed. Some of these solutions will be stable while others
will be unstable. Each stable solution represents a possible physical state
of the thermodynamic system. Which state is occupied depends on the history
as well as existing conditions. Hence, this theory is capable of predicting
magnetic hysteresis. With variation of the applied field He’ the present
state of the system may change continuously or by finite jumps if the state
becomes unstable. These jumps are known as Barkhausen jumps and have been
observed experimentally.

Progress by this very elegant approach has been limited due to the
extreme complexity of the system of nonlinear equations. Some success has
been made in select regions of the magnetization curve for very special geo-

metries of magnetic materia1.3]’47

Independent grain

1.0
<]
(2]
=
~
Z b=
0.5 Interacting grain
7,
0.0 L A L
0 40 80 120

He/e (koe)

Fig. 3.5.--Magnetization curves for various theories.
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The only progress through micromagnetic theory on the shock induced

anisotropy effect has been made by Barte].]]

He used an alternative approach,
known as the Rayleigh-Ritz method, which circumvents direct use of Brown's
equations. This method assumes a form for the final soiution with a sufficient
number of undeterminad parameters. The total energy integral is then
minimized with respect tc these parameters.

His development assumed a uniform anisotropy field as would occur in
single crystals for specific orientations or as would occur in polycrystals
under the interacting grain assumption. By approximating the argument of the
energy integral expression and by considering first harmonics in the assumed
Rayleigh-Ritz solution and corresponding magnetestatic potential, he was able
to draw conclusions about domain size, nucleation field, and subsequent devia-

tion from magnetic saturation.

3.4. Porosity Effect

Previous observations suggest that the major structurdl defects
capabie of significantly altering the results obtained in earlier sections are
nonmagnetic inclusions in the form of voids or 1'mpur'it1'es.]2 Porosity is
characteristic of magnetic ceramics. Even the best hot pressing technicues
are capable of producing garnets only to about 98% or 99% theoretical den-
sity while in ferrites 95% 1is a good number. This is probably characteris-
tic of natural materials also.

Experiments by Wayne et a].]z show that polycrystalline magnetic
ceramics, when subject to hydrostatic pressure, show a strong dependence of
magnetization on pressure. Their interpretation was that nonhydrostatic
strains occuring in the vicinity of cavities created local magnetic anisotropy

fields which produced local deviations in the magnetization and, hence, the
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observed effect. It has been suggested that this same effect might occur to
some extent in the present shock induced anisotropy situation.

A calculation which relates the magnetization to the hydrostatic pres-
sure and the porosity in the apprnach to saturation region of the magnetic

material has been made.48

This calculation is based on the assumption that
the average behavior of an aggregate of cavities in the medium can be repre-
sented by the behavior of a spherical pore in an isotropic elastic continuum.
The strain around a spherical pore in an isotropic elastic medium subject to
external hydrostatic pressure deviates from hydrostatic strain. This devia-
tion contributes to the anisotropy energy. The energy density at a distance
r from the center of a pore of radius a has been calculated to be
¢ . 3Bja 2

= Z—;—P ;g-cos (y +8) - HM, cosy (3.16)
where the first term is the induced anisotropy energy and the second is the
interaction energy. 6 1is the angle between the field poirt and the applied

magnetic field. ¢ 1is the angle between the magnetization at the field point

and the applied magretic field. u is the shear modulus and

Equation (3.16) is derived in Appendix IV. By numerical methods, this expres-
sion leads to a prediction of the dependence of magnetization on P and He‘
Figure 3.6 shows this magnetic dependence on He for 3% porous YIG at two
values of hydrostatic pressure.

The intention of this section is to make a simple estimate of the
effect of porosity on the shock induced anisotropy effect for slightly porous
material. In particular, 3% porous YIG will be considered since this mate-

rial was vtilized in these studies. It will be assumed that the correction to
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the predicted magnetization due to porosity is small and can be superposed on
the actual strain induced anisotropy results. This correction will be obtained
from the previously discussed numerical hydrostatic prediction by using, in-

stead of the hydrostatic pressure, the mean pressure

5 . oy ; 20 -

This correction canrot be added directly but must be weighted siice the full
correction is realized only when the mateiial is initially in magnetic satura-

tion. In fact, when the strain induced anisotropy predicts

e
Mg

ENE

the correction will be zero since this is exactly the average value of ccsy

22 KB
L0 — = = e e e
_o 95} 44 KB
Ef
/
_90 = he 1
0.0 0.5 1.0 1.5
He (koe)

Fig. 3.6.--Magnetic hydrostatic pressure depend-
ence of 3% porous yttrium iron garnet.
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distributed around a spherical pore. Thus, the magnetization will be

%;. = fle,H,) + w(M/MS)A(ﬁlHe)

where f(e,He) is the strain induced auwisotropy prediction (Equation (3.12)
for the interacting grain theory and Equation (3.14) for the independent grain
theory), A(?}He) is the full numerical porosity correction, and u(M/Mb\ is

the weight factor. The correction is assimed to be small so a linear approxi-

w(l) = 1
and
w(‘"/4) = 09
1.0 ™ —_
//
z
%
Zm /
S 0.5F //
/
/
1 i L
0.0, 20 80 120
H/e (koe)

Fig. 3.7.--Correction to independent grain
assumption due to 3% porosity.
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one obtains

M =
M Ms 4 =
m- = fle,H) + T A(P,H_). (3.17)
e T e

S ‘]-E)
The correction is shown in Figure 3.7 for the independent grain assumption.
This correction is seen to be negiigible in the higher regions of the magnets-
zation curve and obtains significance oniy in the lower part of the curve
where the applied field is substantially lower. It is important to notice
that for large strains the effect of porosity on the magnetization curve
becomes quite significant. This is believed, by Royce, to explain the shock
demagnetization results of Shaner and Rayce8 in the plastic region of YIG.

Shock pressures of 90 to 440 kbars were obtained in that work.




CHAPTER IV
EXPERIMENTAL METHOD

An experimental design should reproduce as closely as possible the
requirements of the theoretical model. These requirements are an infinite
slab of forromagnetic material in a state of uniaxial strain normal to the
plane of the slab and an appiied magnetic field in the plane of the slab.
Experimentally, the infinite slab of ferromagnetic material was approximated
by a rectangular slab of yttrium iron garnet, YIG. The state of uniaxi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>